5th International Workshop on PET in Lymphoma

Poster discussion - Technical

L. Kostakoglu – T. Vander Borght

OF THE CENTRAL REVIEW PANEL IN THE ONGOING IELSG37 STUDY OF PRIMARY MEDIASTINAL LYMPHOMA.

L. Ceriani ¹, S. Barrington², A. Biggi ³, B. Malkowski ⁴, U. Metser ⁵, A. Versari ⁶, E. Zucca ¹, S.,Chauvie ³

- 1- Oncology Institute of Southern Switzerland —IOSI, Bellinzona, CH;
- **2** St Thomas Hospital, London, UK;
- 3- Santa Croce Hospital, Cuneo, Italy;
- **4** Oncological Centre, Bydgoszcz, Poland;
- 5- Princess Margareth Hospital, Toronto, Canada;
- 6- Arcispedale S. Maria Nuova, Reggio Emilia, Italy

B2. IMPACT OF SPECIFIC TRAINING IN THE PERFORMANCE OF THE CENTRAL REVIEW PANEL IN THE ONGOING IELSG37 STUDY OF PRIMARY MEDIASTINAL LYMPHOMA

- Web based system (WIDEN) for image exchange
- Performance = agreement rates for 6 reviewers
- Assessment at 3-time points

Evaluation phase	Krippendorf's alfa	Cohen's kappa	Median review time
1. Training (20 pts)	0.42	0.23 – 0.72	N/A
2. Early clinical (10 pts)*	0.45	0.29 – 0.80	74h 12 m
3. Late clinical (50 pts)	0.59	0.54 – 0.91	38h 56m
Overall, clinical (60 pts.) April '14	0.56	0.50 - 0.83	45h 37 m
Overall, clinical (90 pts.) August '14	0.63	0.48 - 0.84	31h 01m

^{*} Investigator meeting with revision discussion of practical rules for reading

B2. IMPACT OF SPECIFIC TRAINING IN THE PERFORMANCE OF THE CENTRAL REVIEW PANEL IN THE ONGOING IELSG37 STUDY OF PRIMARY MEDIASTINAL LYMPHOMA

1. Training (20 pts)

	Mean	1	2	3	4	5	6
1	0.51		0.40	0.80	0.58	0.50	0.29
2	0.51	0.40		0.60	0.46	0.78	0.32
3	0.55	0.80	0.60		0.40	0.76	0.20
4	0.53	0.58	0.46	0.40		0.78	0.43
5	0.64	0.50	0.78	0.76	0.78		0.38
6	0.32	0.29	0.32	0.20	0.43	0.38	

Kripperndorf's alfa = 0.42

2. Early clinical (10 pts)

	Mean	1	2	3	4	5	6
1	0.55		0.40	0.80	0.60	0.53	0.40
2	0.49	0.40		0.58	0.40	0.76	0.29
3	0.57	0.80	0.58		0.40	0.76	0.29
4	0.51	0.60	0.40	0.40		0.76	0.40
5	0.63	0.53	0.76	0.76	0.76		0.32
6	0.34	0.40	0.29	0.29	0.40	0.32	

Kripperndorf's alfa = 0.45

3. Late clinical April '14 (50 pts)

	Mean	1	2	3	4	5	6
1	0.81		0.74	0.84	0.91	0.74	0.84
2	0.66	0.74		0.66	0.67	0.61	0.64
3	0.73	0.84	0.66		0.77	0.54	0.84
4	0.75	0.91	0.67	0.77		0.65	0.76
5	.067	0.74	0.61	0.54	0.65		0.80
6	0.78	0.84	0.64	0.84	0.76	0.80	

Kripperndorf's alfa = 0.59

Clinical April – August '14 (30 pts)

		Mean	1	2	3	4	5	6
	1	0.78		0.60	0.84	1	0.73	0.74
	2	0.53	0.60		0.45	0.55	0.46	0.59
ſ	3	0.70	0.84	0.45		0.87	0.67	0.67
ſ	4	0.77	1	0.55	0.87		0.66	0.79
	5	.073	0.73	0.46	0.67	0.66	·	0.66
	6	0.69	0.74	0.59	0.67	0.79	0.66	

Kripperndorf's alfa = 0.68

B2. IMPACT OF SPECIFIC TRAINING IN THE PERFORMANCE OF THE CENTRAL REVIEW PANEL IN THE ONGOING IELSG37 STUDY OF PRIMARY MEDIASTINAL LYMPHOMA

A11. QPET - A QUANTITATIVE EXTENSION OF THE DEAUVILLE SCALE TO ASSESS RESPONSE ON INTERIM FDG-PET SCANS IN LYMPHOMA

R. Kluge, L. Kurch, D. Hasenclever, C. Mauz-Körholz, A. Elsner, T. Georgi, H. Wallace, J. Landman-Parker, A. Moryl-Bujakowska, M. Cepelová, J. Karlén, A. Alvarez Fernández-Teijeiro, M. Hoffmann, O. Sabri, D. Körholz

Deauville scale :

- 5 ordinal categories for a continuous response
- May be disturbed by optical illusion
- Deauville scale <-> qPET values*
 - SUVpeak = average over the maximum SUV voxel and the three hottest adjacent ones
 - Average liver uptake = 30 ml cuboid VOI in the right liver

*Hasenclever et al. Eur J Nucl Med Mol Imaging 2014;41:1301-8.

A11. QPET - A QUANTITATIVE EXTENSION OF THE DEAUVILLE SCALE TO ASSESS RESPONSE ON INTERIM FDG-PET SCANS IN LYMPHOMA

R. Kluge, L. Kurch, D. Hasenclever, C. Mauz-Körholz, A. Elsner, T. Georgi, H. Wallace, J. Landman-Parker, A. Moryl-Bujakowska, M. Cepelová, J. Karlén, A. Alvarez Fernández-Teijeiro, M. Hoffmann, O. Sabri, D. Körholz

reviews

Annals of Oncology 25: 921–927, 2014 doi:10.1093/annonc/mdt533 Published online 18 December 2013

Systematic review and meta-analysis on the diagnostic performance of FDG-PET/CT in detecting bone marrow involvement in newly diagnosed Hodgkin lymphoma: is bone marrow biopsy still necessary?

H. J. A. Adams¹, T. C. Kwee^{1*}, B. de Keizer¹, R. Fijnheer², J. M. H. de Klerk³, A. S. Littooij¹ & R. A. J. Nievelstein¹

Table 5. Results of seven of nine included studies that allowed calculation of sensitivity and specificity

Study (year)	Sensitivity (%		Specificity (%)	
	Value	95% CI	Value	95% CI
Cortés-Romera et al. (2013) [17]	100	75.3–100	100	92.6-100
Agrawal et al. (2013) [18]	87.5	47.3-99.7	100	85.2-100
Muzahir et al. (2012) [19]	100	90.5-100	100	95.8-100
El-Galaly et al. (2012) [20]	94.9	87.4-98.6	100	99.0-100
Mittal et al. (2011) [22]	100	47.8-100	86.7	59.5-98.3
Cheng et al. (2011) [23]	100	39.8-100	100	87.2-100
Moulin-Romsee et al. (2010) [24]	100	81.5-100	100	94.5-100
Pooled estimate	96.9	93.0-99.0	99.7	98.9-100

¹Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht; ²Departments of Hematology; ³Nuclear Medicine, Meander Medical Center, Amersfoort. The Netherlands

Recommendations for Initial Evaluation, Staging, and Response Assessment of Hodgkin and Non-Hodgkin Lymphoma: The Lugano Classification

Bruce D. Cheson, Richard I. Fisher, Sally F. Barrington, Franco Cavalli, Lawrence H. Schwartz, Emanuele Zucca, and T. Andrew Lister

JOURNAL OF CLINICAL ONCOLOGY

SPECIAL ARTICLE

- Almost perfect diagnostic performances
- BMI often associated with other signs of advanced disease
- "...Thus, if a PET-CT is performed, a bone marrow aspirate/biopsy is no longer required for the routine evaluation of patients with HL... »

Semiautomatic detection of skeletal lesions in PET/CT in pediatric patients with Hodgkin's Lymphoma (PHL)

Georgi T¹, Epstude M¹, Kurch L¹, Elsner A², Mauz-Körholz C³, Körholz D³, Hasenclever D¹, Holzendorf V¹, Wallace WH⁴, Balwierz W⁴, Cepelova M⁴, Karlen J⁴, Landman-Parker J⁴, Fossa A⁴, Sabri O¹, Kluge R¹

¹University of Leipzig, ²Hermes Medical Solution, ³University of Halle, ⁴for the European PHL Study Group

A10. SEMIAUTOMATIC DETECTION OF SKELETAL LESIONS IN PET/CT IN PEDIATRIC PATIENTS WITH HODGKIN'S LYMPHOMA (PHL)

Methods:

1) Skeletal mask in CT, threshold = 160 HU

2) Hole Filling Filter

3) Transfer of the skeletal mask to the PET images

4) Reference VOI (RV) in a non-involved lumbar vertebra

 $SUV > SUV_{meanRV} + 2,5 SD_{RV}$ and Vol. > 0,25 ml

5) Search algorithm

6) Acceptance or rejection of the pre-selected skeletal lesions

A10. SEMIAUTOMATIC DETECTION OF SKELETAL LESIONS IN PET/CT IN PEDIATRIC PATIENTS WITH HODGKIN'S LYMPHOMA (PHL)

Algorithm was tested in:

Results:

Sensitivity

- in 130/142 (92 %) pat. skeletal lesions were detected
- 774/1015 (76.3%) visible skeletal lesions were found

Specificity

 in 25/50 (50%) patients possibly false positive skeletal lesions were detected

BUT: overall only 49 lesions

14/25 pat. with only 1 positive lesion

34 (69%) lesions < 0.5 ml

Multicenter Study for Comparison of ¹⁸F-FLT and ¹⁸F-FDG PET/CT for Early Therapeutic Monitoring of Diffuse Large B-cell Lymphoma

Malik Juweid¹, Ryogo Minamimoto², Julie Vose³, Ranjana Advani² Luis E Fayad⁴, Homer A Macapinlac⁴, Jane Meza³, Jordan H Hankins³ Felix M Mottaghy¹, Andrew Quon²

- 1.RWTH AACHEN UNIVERSITY
- 2.STANFORD UNIVERSITY
- 3.UNIVERSITY OF NEBRASKA
- 4. MD ANDERSON CANCER CENTER

B8. MULTICENTER STUDY FOR COMPARISON OF 18F-FLT AND 18F-FDG PET/CT FOR EARLY THERAPEUTIC MONITORING OF DIFFUSE LARGE B-CELL LYMPHOMA

B8. MULTICENTER STUDY FOR COMPARISON OF 18F-FLT AND 18F-FDG PET/CT FOR EARLY THERAPEUTIC MONITORING OF DIFFUSE LARGE B-CELL LYMPHOMA

Proportion of CR and nonCR patients in Interim PET

Criteria	Outcome	lma	Imaging Summary		NPV (%)
		CR	Non-CR	*	
IHP	CR (21)	8	13	18.8	100.0
	RD (3)	0	3		
		CMR	Non-CMR	*	
EORTC	CR (21)	8	13	18.8	100.0
	RD (3)	0	3		
		Negative	Positive		
Deauville	CR (21)	14	7	30.0	100.0
	RD (3)	0	3		
		CMR	Non-CMR		
PERCIST	CR (21)	11	10	23.1	100.0
	RD (3)	0	3		
		Negative	Positive		
FLT	CR (21)	20	1	75.0	100.0
	RD (3)	0	3		

Emerging Role of ImmunoPET in Receptor Targeted Cancer Therapy

Jan Marik* and Jagath R. Junutula*

« The knowledge of distribution and expression levels of a given receptor is a key for successful receptor targeted cancer therapy »

- •Is the target present and where is it?
- •Does the drug reach the target?
- •Is the dose sufficient to saturate the target?

Biodistribution and uptake of ⁸⁹Zr-rituximab and ⁸⁹Zr-ofatumumab in patients with relapsed diffuse large B cell lymphoma

YWS Jauw¹, MC Huisman², JAJ Janssen², D Vugts², S Zweegman¹, R Boellaard², GAMS van Dongen², OS Hoekstra², JM Zijlstra¹

Dept. of Hematology¹ and Radiology & Nuclear Medicine²

VU University Medical Center, Amsterdam, the Netherlands

Aim: To determine biodistribution and uptake of

⁸⁹Zirconium(Zr)-rituximab(R) and Zr-ofatumumab(O)

Methods:

•6 patients with relapsed DLBCL

- •Administration of 75.0 +/- 3.1 MBq Zr-R (n=5) or Zr-O (n=1) within 1 hour after a therapeutic dose of cold antibody
- •PET-CT scans 1, 72 and 144 hours post injection

Results:

- •In all CD20-positive DLBCL patients (n=4/5) tumor uptake of Zr-R was visible
- •Tumor uptake of Zr-O was observed in a CD20-negative patient (n=1/1)
- Biodistribution in normal tissue was similar for Zr-R and Zr-O

Conclusion::

89Zr-immuno-PET can be used for assessment of tumor targeting with R and O

FDG-PET

89Zr-rituximab-PET

IN CONCLUSION

- FLT: more tumor specific > best for interim PET?
- 89Zr-immuno-PET for assessment of tumor targeting
- Improved clinical impact of FDG PET/CT study = standardization of:
 - Equipment
 - Acquisition
 - Reading
 - Reporting

Thank you for your attention

